Prix bas
CHF423.20
Impression sur demande - l'exemplaire sera recherché pour vous.
Provides an in-depth introduction to 3D printing and biofabrication
Covers inkjet, extrusion and laser-based processing of cell-containing materials
Includes mathematical models used in tissue engineering
In-depth introduction to 3D printing and biofabrication Covers inkjet, extrusion and laser-based processing of cell-containing materials With mathematical models used in tissue engineering Includes supplementary material: sn.pub/extras
Auteur
Aleksandr Ovsianikov is currently an Assistant Professor at Vienna University of Technology (TU Wien, Austria). His research is dealing with the use of additive manufacturing technologies for tissue engineering and regeneration. Dr. Ovsianikov has background in laser physics and material processing with femtosecond lasers. A particular focus his current research is the development of multiphoton processing technologies for engineering biomimetic 3D cell culture matrices. In 2012 he was awarded a prestigious Starting Grant from the European Research Council (ERC) for a project aimed at this topic. Since 2004 Dr. Ovsianikov has contributed to over 60 publications in peer-reviewed journals and 5 book chapters, harvesting over 1500 citations. Major Research Interests: Additive manufacturing / laser-induced photo-chemistry; Photografting / Biofunctionalization; Biocompatible/biodegradable photopolymers; Scaffold based tissue engineering; Three-dimensional tissue models.
James Yoo is Professor and Associate Director of the Wake Forest Institute for Regenerative Medicine (WFIRM), with a cross-appointment to the Department of Physiology and Pharmacology, and the Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences. Dr. Yoo's research efforts are directed toward clinical translation of tissue engineering technologies and cell-based therapies. His interest in the bioprinting technology is due to its ability to generate clinically relevant complex tissue and organ constructs with precision and reproducibility for translational applications.
Vladimir Mironov received his MD from The Ivanovo State Medical Institute and PhD from The Second Moscow Pirogov Medical State Institute. He was trained in Max Planck institute in Martinsried in Germany. Prof. Mironov worked at first as a Director of Bioprinting Research Center and then as a Director of Advanced Tissue Biofabrication Center at The Medical Universityof South Carolina, Charleston, SC, USA.
He is a currently Chief Scientific Officer of company 3D Bioprinting Solutions in Moscow, Russia.
Contenu
Part I (3D Printing).- 3D Printing: Introduction.- Additive Manufacturing Technologies for Fabrication of Scaffolds.- Characterization of Additive Manufactured Scaffolds.- Computational Methods for the Predictive Design of Tissue Engineering Materials.- Materials, Methods and Current Progress of 3D Printing for TE Applications.- Mathematical Modelling of 3D Tissue Engineering Constructs.- Medical Imaging for 3D CAD Models.- Trends in Additive Manufacturing for TE Applications.- Use of Ceramics in Musculoskeletal Regenerative Medicine.- Vascularization of 3D Printed and Engineered Tissues. Part II (Biofabrication).- Biofabrication: Introduction.- Bioprinting - The Intellectual Property Landscape.- Challenges and Perspectives of Biofabrication.- Commercially Available Bioprinters.- Development of Nanocellulose Bioinks for 3D Bioprinting of Soft Tissue.- Fabrication and Printing of Multi-Material Hydrogels .- Extrusion-based Biofabrication in Tissue Engineering and Regenerative Medicine.- Laser-based Cell Printing.- Inkjet etc. (Piezo, Thermo, Surface Wave).- Photopolymerizable Materials for Cell Encapsulation.- Scaffold-free Biofabrication.- Translation and Applications of Biofabrication.