Tiefpreis
CHF154.40
Print on Demand - Exemplar wird für Sie besorgt.
A year after the second edition of his famous translation and commentary on Vitruvius, Daniele Barbaro published The Practice of Perspective , a text he had begun working on many years before. Barbaro was the first to publish a formal treatise entirely dedicated to the science of geometric perspective. In an informal style especially addressed to practicing artists and architects, Barbaro begins by drawing on and expanding the manuscript treatise of Piero della Francesca with regards to basics of perspective constructions for representing three-dimensional solids on two-dimensional media, and then goes on to show that perspective is a particularly suitable instrument for other scientific and artistic applications as well, including cartography, cosmology, stage set design, and anamorphosis.
Here for the first time Barbaro's The Practice of Perspective is made available to contemporary scholars in an English translation, augmented by annotations relating the printed treatise to the three unpublished manuscripts in Italian and Latin of the work now conserved in Venice's Biblioteca Nazionale Marciana.
A foreword by Philip Steadman sets the stage for this book. In-depth essays by authors Kim Williams and Cosimo Monteleone situate the treatise within the editorial panorama of the Cinquecento, outline the innovations that Barbaro brought to the study of perspective, and focus particularly on his creative explorations of geometric solids and the construction of clocks.
Sometimes dismissed in recent studies as a compilation of known principles, the aim of this present book is to reveal the truly innovative nature of Barbaro's experiments and results and restore him to his rightful place as an original scholar of Renaissance perspective theory.
First-time English translation of an important Renaissance treatise on perspective Features a comparisons of the treatise as published in 1568 and the unpublished manuscripts Reveals the truly innovative nature of Barbaro's experiments and results
Autorentext
Kim Williams is a writer and editor living and working in Italy. She received her degree in Architectural Studies from the University of Texas in Austin, and is licensed as an architect in New York State. Her apprenticeship was done in the offices of Philip Johnson in New York. She became interested in mathematics and architecture while writing Italian Pavements: Patterns in Space (Houston: Anchorage Press, 1997) about the role of decorated pavements in the history of Italian architecture. In 1996 she began the international conference series "Nexus: Architecture and Mathematics", the thirteenth edition of which, Nexus 2020/21, will take place in Kaiserlautern, Germany, in July 2021. In 1999 she founded the Nexus Network Journal to provide a dedicated venue for scholarly research in architecture and mathematics.In 2000 she founded Kim Williams Books, an independent press for books about architecture and mathematics. Kim has published many articles in scholarly journals on the use of mathematical principles in architecture, including Mathematical Intelligencer and Leonardo. Her drawings have been displayed in both group and solo exhibits. She has participated in numerous international conferences. She co-edited, with Michael Ostwald, the 2-volume Architecture and Mathematics from Antiquity to the Future (Birkhäuser, 2015). She is editor for Springer of the book series "Mathematics and the Built Environment". Her latest book is Daniele Barbaro's Vitruvius of 1567. Cosimo Monteleone is Associate Professor of Descriptive Geometry and Architectural Representation at the Università degli Studi di Padova. In 2003 he obtained his degree in Architecture at the University IUAV of Venice, where he also earned his Ph.D. in 2010 in "Architectural Composition curriculum in Survey and Representation of Architecture and Landscape" with a study on the Guggenheim Museum by Frank Lloyd Wright. His research focuses on architectural, urban and landscape survey; 3D modelling of architecture and city; augmented and virtual reality; gnomonic; science and technique applied to art and architecture; history of representation with particular skills related to Renaissance perspective. He is member of "Visualizing Cities", an international research devoted to the analysis and the representation of the historical, urban and architectural transformations. He is member of the National Technical UNI - UNI / CT 047 / GL 03 (Technical drawing for building and installations). On the topics of his research he has published several essays, presented conferences, lectures, directed digital installations for national and international exhibitions. Among his publications is Frank Lloyd Wright. Geometria e Astrazione nel Guggenheim Museum (Rome: Aracne 2013). He has published two papers in the Nexus Network Journal: "Perspective at Palladio's Time and Its Scientific Heritage" (with Andrea Giordano) and "The Perspective of Daniele Barbaro" (2019). His latest book is La prospettiva di Daniele Barbaro. Note critiche e trascrizione del manoscritto It. IV, 39=5446 (Aracne, 2020).
Inhalt
Preface.- Translators' Note.- Acknowledgements.- Daniele Barbaro and the Geometric Solids.- Daniele Barbaro's Innovations in Perspective Studies.- Dedication to Matteo Macigni.- Foreword.- Part I , setting up a perspective .- The Ordering of the principles.- On the eye.- On the way of seeing.- On the thing seen.- On distance.- On the division of planes.- Where the eye must be placed.- On the distance.- Of the size that figures must be made in the painting.- Part II, in which are treated ichnographia , that is, the description of the plan.- The practice of describing figures.- The way of describing plans.- The way to degrade a given plane.- The way to reduce the degraded plane into a square.- Division of the degraded square according to the perfect square.- The way to add to or take away from the degraded square.- How to cut a square from a quadrangular surface that is wider than it is long.- How to respond to those who, in dividing the plane into braccia, cometo have a foreshortening that is larger than the perfect.- The plan of the triangle, and how the degraded is made from the perfect form.- How to form the plan of a cube.- Other ways of making plans.- Part III, which treats the ways of raising the body from the plan.- Three ways of raising bodies from the plans .- Unfolding, raising and shadowing the pyramid.- Unfolding, raising and shadowing the cube .- Unfolding, raising and shadowing the body called 'octahedron' .- Unfolding, raising and shadowing the dodecahedral body .- Unfolding, raising and shadowing the body called 'icosahedron' .- Description of the irregular bodies that are born from the regular bodies [truncated tetrahedron] .- Description of a body that is born from the cube and from the octahedron, and its unfolding [cubocatahedron] .- Description of another irregular body that is born from the cube [truncated cube] .- Description and unfolding of another body thatis born from the cube [small rhombicuboctahedron] .- Unfolding and description of a body that is born from the octahedron [truncated octahedron] .- Unfolding and description of a body that is born from the dodecahedron and from the icosahedron [icosidodecahedron] .- Unfolding and description of another body that is born from the dodecahedron [truncated dodecahedron] .- Unfolding and description of another body that is born from the icosahedron [truncated icosahedron] .- Unfolding and description of another body that is born from a composite body [great rhombicuboctahedron] .- Unfolding and description of another body that is born from a composite body [rectified truncated octahedron] .- Unfolding and description of another body composite body [small rhombicosidodecahedron] .- Unfolding and description of anot…