Willkommen, schön sind Sie da!
Logo Ex Libris

Deep Learning. Das umfassende Handbuch

  • Kartonierter Einband
  • 912 Seiten
(0) Erste Bewertung abgeben
Bewertungen
(0)
(0)
(0)
(0)
(0)
Alle Bewertungen ansehen
Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regul... Weiterlesen
20%
108.00 CHF 86.40
Auslieferung erfolgt in der Regel innert 5 bis 7 Werktagen.

Beschreibung

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-Verfahren Die Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

»Ian Goodfellow ist der Shootingstar der Künstlichen Intelligenz.« Alexander Armbruster, Frankfurter Allgemeine Zeitung, 13.07.2017)

»Geschrieben von drei Experten des Fachgebiets ist dieses Buch das einzige umfassende Buch zum Thema.« (Elon Musk, Cochair von OpenAI, Cofounder und CEO von Tesla und SpaceX)

»Als Leser darf man eine ausführliche Wissenssammlung zum Thema Künstliche Intelligent erwarten.« (Developer-Blog, 05/2019)



Autorentext

Ian Goodfellow ist Informatiker und Research Scientist bei Google Brain und arbeitet dort an der Entwicklung von Deep Learning. Er ist der Erfinder der Generative Adversarial Networks, die Yann LeCun, Facebooks Leiter für Künstliche-Intelligenz-Forschung, als die coolste Erfindung im Deep Learning der letzten 20 Jahre beschrieben hat. Die FAZ nannte Goodfellow den "Shooting Star der Künstlichen Intelligenz", die Wired einen der wichtigsten Forscher auf diesem Gebiet.
Yoshua Bengio ist Professor of Computer Science an der Université de Montréal.
Aaron Courville ist Assistant Professor of Computer Science an der Université de Montréal.



Klappentext

  • Mathematische Grundlagen für Machine und Deep Learning
  • Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze
  • Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks

Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning.

In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt.

In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf.

Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt.

Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning

  • Lineare Algebra
  • Wahrscheinlichkeits- und Informationstheorie
  • Bayessche Statistik
  • Numerische Berechnung

Teil II: Deep-Learning-Verfahren

  • Tiefe Feedforward-Netze
  • Regularisierung
  • Optimierung beim Trainieren tiefer Modelle
  • Convolutional Neural Networks
  • Sequenzmodellierung für Rekurrente und Rekursive Netze
  • Praxisorientierte Methodologie
  • Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache

Teil III: Deep-Learning-Forschung

  • Lineare Faktorenmodelle
  • Autoencoder
  • Representation Learning
  • Probabilistische graphische Modelle
  • Monte-Carlo-Verfahren
  • Die Partitionsfunktion
  • Approximative Inferenz
  • Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.



Zusammenfassung
  • Mathematische Grundlagen für Machine und Deep Learning
  • Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze
  • Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks

Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning.

In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt.

In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf.

Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt.

Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning

  • Lineare Algebra
  • Wahrscheinlichkeits- und Informationstheorie
  • Bayessche Statistik
  • Numerische Berechnung

Teil II: Deep-Learning-Verfahren

  • Tiefe Feedforward-Netze
  • Regularisierung
  • Optimierung beim Trainieren tiefer Modelle
  • Convolutional Neural Networks
  • Sequenzmodellierung für Rekurrente und Rekursive Netze
  • Praxisorientierte Methodologie
  • Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache

Teil III: Deep-Learning-Forschung

  • Lineare Faktorenmodelle
  • Autoencoder
  • Representation Learning
  • Probabilistische graphische Modelle
  • Monte-Carlo-Verfahren
  • Die Partitionsfunktion
  • Approximative Inferenz
  • Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Produktinformationen

Titel: Deep Learning. Das umfassende Handbuch
Untertitel: Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze
Autor:
EAN: 9783958457003
ISBN: 978-3-95845-700-3
Format: Kartonierter Einband
Herausgeber: bhv / mitp
Genre: Sonstiges
Anzahl Seiten: 912
Gewicht: 1533g
Größe: H241mm x B172mm x T51mm
Veröffentlichung: 06.11.2018
Jahr: 2018
Auflage: 2018

Weitere Produkte aus der Reihe "mitp Professional"